The RXRalpha gene functions in a non-cell-autonomous manner during mouse cardiac morphogenesis.
نویسندگان
چکیده
Germline mutation in mice of the retinoic acid receptor gene RXRalpha results in a proliferative failure of cardiomyocytes, which leads to an underdeveloped ventricular chamber and midgestation lethality. Mutation of the cell cycle regulator N-myc gene also leads to an apparently identical phenotype. In this study, we demonstrate by chimera analysis that the cardiomyocyte phenotype in RXRalpha-/- embryos is a non-cell-autonomous phenotype. In chimeric embryos made with embryonic stem cells lacking RXRalpha, cardiomyocytes deficient in RXRalpha develop normally and contribute to the ventricular chamber wall in a normal manner. Because the ventricular hypoplastic phenotype reemerges in highly chimeric embryos, we conclude that RXRalpha functions in a non-myocyte lineage of the heart to induce cardiomyocyte proliferation and accumulation, in a manner that is quantitatively sensitive. We further show that RXRalpha is not epistatic to N-myc, and that RXRalpha and N-myc regulate convergent obligate pathways of cardiomyocyte maturation.
منابع مشابه
Ventricular muscle-restricted targeting of the RXRalpha gene reveals a non-cell-autonomous requirement in cardiac chamber morphogenesis.
Mouse embryos lacking the retinoic acid receptor gene RXR(alpha) die in midgestation from hypoplastic development of the myocardium of the ventricular chambers and consequent cardiac failure. In this study, we address the issue of whether the RXRalpha gene is required in the cardiomyocyte lineage by generating mice that harbor a ventricular restricted deficiency in RXRalpha at the earliest stag...
متن کاملA transcriptionally silent RXRalpha supports early embryonic morphogenesis and heart development.
Retinoic acid (RA) receptors (RARs) alpha, beta, and gamma heterodimerized with rexinoid receptors (RXRs) alpha, beta, and gamma mediate the RA signal. To analyze the contribution of the transcriptional activity of RXRalpha, the main RXR during embryogenesis, we have engineered a mouse line harboring a transcriptionally silent RXRalpha mutant that lacks the activation functions AF1 and AF2. All...
متن کاملDistinct subsets of Eve-positive pericardial cells stabilise cardiac outflow and contribute to Hox gene-triggered heart morphogenesis in Drosophila
The Drosophila heart, composed of discrete subsets of cardioblasts and pericardial cells, undergoes Hox-triggered anterior-posterior morphogenesis, leading to a functional subdivision into heart proper and aorta, with its most anterior part forming a funnel-shaped cardiac outflow. Cardioblasts differentiate into Tin-positive 'working myocytes' and Svp-expressing ostial cells. However, developme...
متن کاملDownregulation of atrial markers during cardiac chamber morphogenesis is irreversible in murine embryos.
Vertebrate cardiogenesis is a complex process involving multiple, distinct tissue types which interact to form a four-chambered heart. Molecules have been identified whose expression patterns co-segregate with the maturation of the atrial and ventricular muscle cell lineages. It is not currently known what role intrinsic events versus external influences play in cardiac chamber morphogenesis. W...
متن کاملInactivation of erythropoietin leads to defects in cardiac morphogenesis.
Erythropoietin is an essential growth factor that promotes survival, proliferation, and differentiation of mammalian erythroid progenitor cells. Erythropoietin(-/-) and erythropoietin receptor(-/-) mouse embryos die around embryonic day 13.5 due, in part, to failure of erythropoiesis in the fetal liver. In this study, we demonstrated a novel role of erythropoietin and erythropoietin receptor in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 125 10 شماره
صفحات -
تاریخ انتشار 1998